

Image Diagnostic Technology Ltd

53 Windermere Road, London W5 4TJ Tel: +44 (0)20 8819 9158 www.idtscans.com email: info@idtscans.com

Some Facts about Cone Beam CT that May Not Be True

Anthony Reynolds BA MSc PhD Registered Clinical Scientist CS03469

Image Diagnostic Technology Ltd.

Who or what is IDT?

Image Diagnostic Technology Ltd aka "IDT Scans"

Specialises in:

- arranging dental CT/CBCT scans
- 3D processing
- radiology reports
- implant simulation
- 3D models
- surgical drill guides

31,500 scans processed since 1991

FOV, kVp, mAs, DAP, DLP, Effective Dose recorded for last 10,000 scans

www.idtscans.com

Home About Us Services Support Knowledge Base Contact Us

Get the most out of your dental CT/CBCT scans

REFORMAT AN EXISTING SCAN

REQUEST A RADIOLOGY REPORT

REQUEST A NEW DENTAL CT SCAN

Choose a scanning site in the UK or Ireland

www.idtscans.com

Downloads

Click here to download Lecture Slides

Click here to download our Publications.

For further assistance please contact IDT Scans

©2008-17 IDT Scans	Terms & Conditions	Privacy Policy	V3.2 Rev 2016-12-14
--------------------	--------------------	----------------	---------------------

"Half of the lies about CBCT are not true"

To challenge some fundamental concepts that many people accept without questioning.

- Do they agree with Physics principles?
- Are they supported by the literature?

"Confessions of an ex-CBCT salesman"

To challenge some fundamental concepts that many people accept without questioning.

- Do they agree with Physics principles?
- Are they supported by the literature?

Fact #1:

Scanning only one side of the patient is a good way to reduce the radiation dose.

Cone Beam CT (CBCT) Scanner

GXCB-500[™] is a trademark of Gendex Dental Systems of Lake Zurich, USA

What happens in a Small Field Of View scan

How much dose do points outside the primary beam receive?

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Workshop on dental Cone Beam CT

The Absorbed Dose to the left side of the patient is not zero (maybe around 50% of the Absorbed Dose to the right side).

Notes e.g. specific imaging parameters / protocols / concerns..... PLEASE AUUID SCANING THE SPINE

"Sorry mate – no can do!"

Fact #1 Revisited:

1. If I can't see it in the images it didn't receive any dose. FALSE

2. If I can't see it in the images I don't have to report on it. TRUE (benefits the dentist not the patient)

Why do we want to reduce the Dose?

Annals of the ICRP

PUBLICATION 103

The 2007 Recommendations of the International Commission on Radiological Protection

> Editor J. VALENTIN

PUBLISHED FOR

The International Commission on Radiological Protection

by

Principles of Radiation Protection

ICRP103:

- Justification
 (benefits must outweigh the risks)
- Diagnostically Acceptable
 Optimisation (keep doses As Low As Reasonably Achievable)
- Dose Limits (1 mSv per year for members of the public) (no dose limits for medical exposures)

Benefit versus Risk

Risk of losing your luggage: about 6 per thousand Risk of fatal cancer: about 1 per 20 million

Want to Optimise

Benefit to Patient* Risk to Patient

* not to the dentist!

What is the best way to Optimise the Dose?

1. Reduce the Height (vertical collimation)

> Reduces the risk without loss of benefit in most cases.

Absorbed Dose outside primary beam is effectively zero

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Workshop on dental Cone Beam CT

More ways to Reduce the Dose

2. Reduce the mAs (tube current, scan duration)

- Reducing the mA may increase the noise

- Reducing the scan duration may decrease the number of projections.

how CT works...

Godfrey Hounsfield

Allan Cormack

Nobel prize in Medicine, 1979

Animation courtesy of Demetrios J. Halazonetis www.dhal.com

Reducing the Scan Duration

- Fewer projections

- Less detail (spatial resolution)

- Example: i-CAT Classic

40 second scan has better detail than 20 second scan

3. Reduce the Width (horizontal collimation)

- Absorbed Dose outside primary beam is not zero (about 50% from SEDENTEXCT measurements)
- There may be some loss of benefit

Which is the best way to reduce the dose?

1. Reduce the Height

- linear reduction in risk, no loss of benefit in most cases

2. Reduce the mAs

- linear reduction in risk, some loss of benefit

3. Reduce the Width

- less than linear reduction in risk, more loss of benefit

4. Move patient to the side

- Very little reduction in risk, large loss of benefit

Fact #2:

If you halve the diameter of the scan (from 8cm to 4cm) then the dose will be roughly half as much (for the same kVp and mAs).

Fact #2a:

If you double the diameter of the scan (from 8cm to 16cm) then the dose will be roughly twice as much (for the same kVp and mAs).

Gendex CB-500: 8.6cm FOV

Gendex CB-500: 15.6cm FOV

- Same DAP
- Same Dose

Gendex CB-500 – Cesium Iodide panel

Medium Field Of View (MFOV)		8.6cm				
Scan Duration (s)	Rotation (°)	Projections	Exposure (mAs)	Voxel Sizes (mm)	Typical DAP (mGy.cm) Both Jaws	Typical E.D. (µSv) Both Jaws
4.8	180	160	8.5	0.4, 0.3	155	20
8.9	360	300	15.4	0.4, 0.3	285	35
12.6	180	320	16.9	0.25, 0.2, 0.125	315	40
23	360	600	30.9	0.25, 0.2, 0.125	570	70
Extended Field Of View (EFOV)*			15.6cm			
Scan Duration (s)	Rotation (°)	Projections	Exposure (mAs)	Voxel Sizes (mm)	Typical DAP (mGy.cm) Both Jaws	Typical E.D. (µSv) Both Jaws
8.9	360*	300	15.4	0.4, 0.3	285	30
23	360*	600	30.9	0.25, 0.2	570	65

Effect of Offsetting the Detector:

- Data are collected over 360°
- Half the patient gets irradiated for the first 180° and the other half gets irradiated for the second 180°.
- Therefore a 360° EFOV scan is equivalent to two 180° MFOV scans.
- There will be some loss of resolution, but no increase in dose.

Just about all modern CBCT machines use a small detector multiple times to obtain a larger Field Of View.

- On the Gendex CB-500 the mAs stays the same
- On most other scanners the mAs does not stay the same.

Example:

- Gendex DP-700 uses 4cm detector twice to get 8cm Field Of View
- However, the mAs increases from 24.6 for the 4cm FOV to 51.0 for the 8cm FOV.
- The increase in dose is due to the increase in mAs, not the increase in Field Of View.

Fact #2 revisited:

It's the diameter of the beam that counts, not the diameter of the visible images.
Fact #3:

CBCT Scanners are much more dose efficient now than they were 10 years ago.

CBCT State of the Art (circa 2005)

i-CAT[™] is a trademark of Imaging Sciences International LLC of Hatfield, USA

CBCT State of the Art (circa 2015)

Gendex[™] is a trademark of Gendex Dental Systems of Lake Zurich, USA

How do we know what the Effective Dose is?

Method 1: Measure it!

- 1. Put TLD chips in a Rando phantom and measure Absorbed Doses to each organ
- 2. Apply correction factors to obtain Equivalent Doses for each organ
- 3. Take the weighted sum of all the Equivalent Doses.

Effective Dose (E)

$$E = \sum_{T} H_{T} w_{T}$$

 H_T = Organ Equivalent Dose w_T = Tissue weighting factor

Unit = (Sv) Sievert Effective Dose is proportional to risk of fatal cancer

	w _T value ICRP10
Brain	0.01
Salivary glands	0.01
Skin	0.01
Thyroid	0.04
Oesophagus	0.04
Lung	0.12
Red bone marrow	0.12
Breast	0.12
Bone surface	0.01
Liver	0.04
Stomach	0.12
Colon	0.12
Ovary	0.08
Bladder	0.04
Testes	0.08
Remainder	0.12

Method 2: Use published data.

Contents lists available at ScienceDirect

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Effective dose range for dental cone beam computed tomography scanners

Ruben Pauwels^{a,*}, Jilke Beinsberger^{a,1}, Bruno Collaert^{b,2}, Chrysoula Theodorakou^{c,d,3}, Jessica Rogers^{e,3}, Anne Walker^{c,3}, Lesley Cockmartin^{f,4}, Hilde Bosmans^{f,5}, Reinhilde Jacobs^{a,6}, Ria Bogaerts^{g,7}, Keith Horner^{d,8}, The SEDENTEXCT Project Consortium⁹

- ^a Oral Imaging Center, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven, Belgium
- ^b Center for Periodontology and Implantology, Heverlee, Belgium
- ^c North Western Medical Physics, The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, UK
- ^d School of Dentistry, University of Manchester, Manchester Academic Health Sciences Centre, UK
- ^e School of Medicine, University of Manchester, Manchester Academic Health Sciences Centre, UK
- ^f Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium
- ⁸ Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium

Eur J Radiol 81,2,267-271 (February 2012)

DentoMaxilloFacial Radiology

CBCT Special Issue

VOLUME 44, ISSUE 1, 2015

Dentomaxillofacial Radiology (2015) 44, 20140197 © 2015 The Authors. Published by the British Institute of Radiology

birpublications.org/dmfr

CBCT SPECIAL ISSUE: REVIEW ARTICLE

Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units

¹J B Ludlow, ²R Timothy, ³C Walker, ⁴R Hunter, ⁵E Benavides, ⁶D B Samuelson and ⁶M J Scheske

¹North Carolina Oral Health Institute, Koury Oral Health Sciences, Chapel Hill, NC, USA; ²Graduate Program in Oral and Maxillofacial Radiology, University of North Carolina, Chapel Hill, NC, USA; ³Department of Orthodontics, University of Missouri, Columbia, MO, USA; ⁴Private Practice of Orthodontics, Houston, TX, USA; ⁵University of Michigan School of Dentistry, Ann Arbor, MI, USA; ⁶University of North Carolina School of Dentistry, Chapel Hill, NC, USA

Method 3: Use the Dose Length Product (DLP)

CTDIvol is the dose per cm

DLP = CTDIvol x Irradiated Length

Effective Dose = DLP x F (where F is a conversion factor)

- works well for medical CT
- most CBCT manufacturers don't display CTDIvol (exception: J.Morita, NewTom)

Conversion Factor F

Tab. 3.1

Average values f_{mean} of conversion factor (in mSv/mGy·cm) to convert from dose free-in-air on the axis of rotation into effective dose for different regions of the body and patient groups (beam quality: 125 kV, 9 mm Al-equivalent); demarcation of the body regions was made according to (Hidajat96/2) (see also fig. 3.1 - 3.3).

Body region	Adults		Children (7 year-old)		Babies (8 week-old)	
, 3	(female)	(male)	(female)	(male)	(female)	(male)
Head	0.0022	0.0020	0.0028	0.0028	0.0075	0.0074
Neck	0.0051	0.0047	0.0056	0.0055	0.018	0.017
Chest	0.0090	0.0068	0.018	0.015	0.032	0.027
Upper abdomen	0.010	0.0091	0.020	0.016	0.036	0.034
Pelvis (*)	0.011	0.0062	0.018	0.011	0.045	0.025
Entire abdomen (*)	0.010	0.0072	0.019	0.014	0.041	0.031

Table from "Radiation Exposure in Computed Tomography" edited by Hans Dieter NagelF can also by calculated from ImPACT CTDosimetry calculatorwww.impactscan.org

Roughly speaking, F = 0.002mSv / mGy.cm for Maxilla and 0.003mSv / mGy.cm for Mandible 2 µSv 3 µSv Accuracy: ±50%

Effective Dose for Medical CT Scanners

Patient ID : 15625528 Study ID : 6021 Sex : F Patient's Birth Date : 1952.07.20 Patient's Age : 58Y Image Comment : Study Date : 2011.06.30 Body Part : Contrast Enhance : NONE Contrast/Bolus Volume : Contrast density : Requesting Service : Referring Physician's Name : Name of Physician Reading Study : Operators Name : Total mAs in Study : 652 Total Scan time in Study . 10.85 Total DLP mGycm : 64.00 Total slice : 5 Scanning Sequence : HELICAL CT

Multiply DLP by 2 for Maxilla or 3 for Mandible to get the Effective Dose in microSieverts (µSv) Accuracy: ±50% Mx 128µSv

Method 4: Use the DAP (with caution!)

Cone Beam Computed Tomography radiation dose and image quality assessments

Sara Lofthag-Hansen

Department of Oral and Maxillofacial Radiology Institute of Odontology at Sahlgrenska Academy

UNIVERSITY OF GOTHENBURG

Gothenburg 2010

Table 5. Most commonly used exposure parameters in three specified regions and corresponding dose-are product (DAP) value and effective dose according to ICRP 60 (1991)

	Volume size	Tube voltage	Tube current	DAP value	Effective dose
Region	(mm x mm)	(kV)	(m.4)	(mGy cm ²)	(µSv)
Upper jaw					
Cuspid	30 x 40	80	5.0-6.0	263-316	21-25
-	40 x 40	75	4.0-5.0	260-325	21-26
	60 x 60	75	4.5-5.5	645-788	52-63
Lower jaw					
Second premolar-first molar	30 x 40	75-80	3.0-6.0	140-316	11-25
-	40 x 40	75	4.0-6.0	260-390	21-31
	60 x 60	75	5.0-6.0	716-859	57-69
Lower jaw					
Third molar	30 x 40	75-80	3.0-6.5	140-342	11-27
	40 x 40	75-80	4.0-5.0	260-366	21-29
	60 x 60	75-80	4.5-6.0	645-967	52-77

Effective Dose (μ Sv) = 0.1 x DAP (mGy.cm2) for Maxilla Effective Dose (μ Sv) = 0.15 x DAP (mGy.cm2) for Mandible Effective Dose (μ Sv) = 0.125 x DAP (mGy.cm2) for Mn & Mx

VERY ROUGH – USE WITH CAUTION !

Results of Monte Carlo calculations

Morant J, Salvadó M, Hernández-Girón I, Casanovas R, Ortega R, Calzado A. Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms. Dentomaxillofac Radiol. 2012 Aug 29. [Epub ahead of print]

i-CAT 17-19

Effective dose-DAP relationship:

Effective dose (µSv) = 0.130 x DAP (mGycm²), r²=0.994

slide from presentation by Dr Chrysoula Theodorakou, "Dental Cone Beam Computed Tomography", BIR, London, 6 November 2012

Use the DAP with caution!

- Same DAP
- Different Dose

Effective dose range for dental cone beam computed tomography scanners

Ruben Pauwels^{a,*}, Jilke Beinsberger^{a,1}, Bruno Collaert^{b,2}, Chrysoula Theodorakou^{c,d,3}, Jessica Rogers^{e,3}, Anne Walker^{c,3}, Lesley Cockmartin^{f,4}, Hilde Bosmans^{f,5}, Reinhilde Jacobs^{a,6}, Ria Bogaerts^{g,7}, Keith Horner^{d,8}, The SEDENTEXCT Project Consortium⁹

Table 5

Absorbed organ dose and effective dose for small FOV (localised) protocols.

	3D Accuitomo 170	Kodak 9000 3D	Kodak 9000 3D	Pax-Uni3D
FOV positioning	Lower jaw, molar region	Upper jaw, front region	Lower jaw, molar region	Upper jaw, front regio
Red bone marrow	37	21	78	47
Thyroid	195	30	251	209
Skin	32	25	24	55
Bone surface	37	27	35	49
Salivary glands	2120	523	709	1073
Brain	37	18	290	28
Remainder	70	74	86	146
Effective dose	(43)	19	40	44

Accuitomo 4cm x 4cm @ 90kVp and 87.5mAs

A	ttribute List			
	Crew	[Element	Description	 Value
	Group	Element	Description	value
	🛇 🦉 0x0008 -	0x0016	SOPCIassUID	1.2.840.10008.5.1.4.1.1.2
	ox0008 😵 📀	0x0018	SOPInstanceUID	1.2.392.200036.9133.3.1.1
	⊖ 😂 0x0008	0x0022	AcquisitionDate	20180227
	ox0008 🔁 🛇	0x0023	ContentDate	20180227
	ox0008 🖸 🛇	0x0032	AcquisitionTime	100301
	ox0008 🖸 🛇	0x0033	ContentTime	100301
	💊 🌮 0x000a 🛛	0x000a	Filename	SLZ000.dcm
	og 🖓 0x0010	0x0000	PatientGroupLength	80
	ox0018	0x0000	AcquisitionGroupLength	166
	ox0018 🔁 🔿	0x0050	SliceThickness	0.080
	ox0018 🖸 🔿	0x0060	KVP	90.0
	ox0018 🔁 🔿	0x1110	DistanceSourceToDetector	842.0
	ox0018 🔁 🔿	0x1111	DistanceSourceToPatient	540.0
	ox0018 🔁 🛇	0x1150	ExposureTime	17500
	ox0018	0x1151	XRayTubeCurrent	5

87

87500

4.57

678

501

192

4.020000

00000001

-20.120000\-20.120000\-20.000000

5000.000000

 $DAP = 4.02 \times 100 = 402 \text{mGy.cm}^2$ DLP = 4.57 x 4 = 18.28mGy.cm

👝 💟 0x0018

💊 😵 0x0020

👝 💟 0x0020

💊 😂 0x0020

👝 😂 0x0020

👝 💟 0x0020

👝 😂 0x0020

👝 😒 0x0020

🗛 🦻 ກະກາງຊ

<

0x1152

0x1153

0x115e

0x8151

0x9345

0x0000

0x0012

0x0013

0x0032

0x0037

0x1002

0x4000

0-0000

Exposure

CTDIvol

ExposureInMicroAs

ImageGroupLength

AcquisitionNumber

ImagePositionPatient

ImagesInAcquisition

ImageComments

ImageOrientationPatient

ImagePresentationGroupLength

InstanceNumber

XRayTubeCurrentInMicroA

ImageAndFluoroscopyAreaDoseProduct

Effective Dose \approx 402 x 0.15 = 60µSv Effective Dose \approx 18.28 x 3 = 55 μ Sv

×

Accuitomo 4cm x 4cm: 43µSv from SEDENTEXCT 55µSv from DLP 60µSv from DAP

50µSv ± 20%

i-CAT 16cm x 4cm: 38µSv from Ludlow's meta-analysis

How accurate do we need to be?

- Only interested in dose because it enables us to estimate the risk.
- A factor of 2 change in risk is unlikely to bring about a change in the patient's management.
- A factor of 10 would be in line with estimates of risk in other areas.

Cancer: science and society and the communication of risk

Kenneth C Calman

BMJ VOLUME 313 28 SEPTEMBER 1996

This article is based on the Calum Muir lecture, delivered in Edinburgh in September 1996.

Table 2—Descriptions of risk in relation to the risk of an individual dying (D) in any one year or developing an adverse response (A)

Term used	Risk range	Example	Risk estimate
High	≥1:100	(A) Transmission to susceptible household contacts of measles and chickenpox ⁶	1:1-1:2
		(A) Transmission of HIV from mother to child (Europe) ⁷	1:6
		(A) Gastrointestinal effects of antibiotics ⁸	1:10-1:20
Moderate	1:100-1:1000	(D) Smoking 10 cigarettes a day ⁹	1:200
		(D) All natural causes, age 40 ⁹	1:850
Low	1:1000-1:10 000	(D) All kinds of violence and poisoning ⁹	1:3300
		(D) Influenza ¹⁰	1:5000
		(D) Accident on road ⁹	1:8000
Very low	1:10 000- 1:100 000	(D) Leukaemia ⁹	1:12 000
		(D) Plaving soccer ⁹	1:25 000
		(D) Accident at home ⁹	1:26 000
		(D) Accident at work ⁹	1:43 000
		(D) Homicide ⁹	1:100 000
Minimal	1:100 000- 1:1 000 000	(D) Accident on railway ⁹	1:500 000
		(A) Vaccination associated polio ¹⁰	1:1 000 000
Negligible	≤1:1 000 000	(D) Hit by lightning ⁹	1:10 000 000
		(D) Release of radiation by nuclear power station ⁹	1:10 000 000

What is the Risk from a CBCT scan?

- Assume adult patient, dento-alveolar scan, both jaws
- What is a typical dose?

Effective dose for medium field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Workshop on dental Cone Beam CT

What is the Risk from a CBCT scan?

- Assume adult patient, dento-alveolar scan, both jaws
- Effective Dose might be 100 microSieverts
- Risk that patient might develop fatal cancer in 20 years time

= 5% (1 in 20) per Sievert (from ICRP103)

- = 1 in 20 million for 1 microSv
- = 100 in 20 million for 100 microSv
- = 1 in 200,000 (roughly) for 100 microSv

Health & Safety people would call this a "Minimal Risk"

* If your patient is a child the risk is 3x more

Risk varies with Age

Age group (years)	Multiplication factor for risk	
<10	х 3	
10-20	x 2	
20-30	x 1.5	5 7% per Sievert at age 30
30-50	x 0.5	
50-80	x 0.3	
80+	Negligible risk	

RADIATION PROTECTION N° 172 A report prepared by the SEDENTEXCT project 2011
<u>www.sedentexct.eu</u>

Cancer: science and society and the communication of risk

Kenneth C Calman

BMJ VOLUME 313 28 SEPTEMBER 1996

This article is based on the Calum Muir lecture, delivered in Edinburgh in September 1996.

Table 2—Descriptions of risk in relation to the risk of an individual dying (D) in any one year or developing an adverse response (A)

Term used	Risk range	Example	Risk estimate
High	≥1:100	(A) Transmission to susceptible household contacts of measles and chickenpox ⁶	1:1-1:2
		(A) Transmission of HIV from mother to child (Europe) ⁷	1:6
		(A) Gastrointestinal effects of antibiotics8	1:10-1:20
Moderate	1:100-1:1000	(D) Smoking 10 cigarettes a day ⁹	1:200
		(D) All natural causes, age 40 ⁹	1:850
Low	1:1000-1:10 000	(D) All kinds of violence and poisoning ⁹	1:3300
		(D) Influenza ¹⁰	1:5000
		(D) Accident on road ⁹	1:8000
Very low	1:10 000- 1:100 000	(D) Leukaemia ⁹	1:12 000
		(D) Playing soccer ⁹	1:25 000
		(D) Accident at home ⁹	1:26 000
		(D) Accident at work ⁹	1:43 000
		(D) Homicide ⁹	1:100 000
Minimal	1:100 000- 1:1 000 000	(D) Accident on railway ⁹	1:500 000
		(A) Vaccination associated polio ¹⁰	1:1 000 000
Negligible	≤1:1 000 000	(D) Hit by lightning ⁹	1:10 000 000
		(D) Release of radiation by nuclear power station ⁹	1:10 000 000

Fact #3 revisited:

Doses are not getting lower (but scanners are getting cheaper).

Fact #4:

Even if the Effective Dose is a bit high, we are only irradiating a very small region of the body, so that's OK.

How do we know that exposure to radiation results in harm?

Deterministic Effects are reproducible

- severity of the effect increases with the dose
- not observed below a threshold dose of about 500mSv

Stochastic Effects are random

- the risk (not the severity) increases with the dose
- known to occur above 20mSv or so
- below about 20mSv we don't know if they occur or not

Hereditary Effects are random but the incidence is very low

Dr Mihran Kassabian (1870–1910)

Deterministic Effect

Estimated excess relative risk (±1 SE) of mortality (1950–1997) from solid cancers among groups of survivors in the LSS cohort of atomic bomb survivors, who were exposed to low doses (<500 mSv) of radiation (2).

Brenner D J et al. PNAS 2003;100:13761-13766

What is radon - and how does it work?

In short - Gastein radon therapy stimulates the ability of your own cells to repair themselves. While you swim in thermal water, sweat in a radon vapor bath or relax in the Gastein Healing Gallery, your body absorbs radon through your respiratory passages and skin. In the process, the noble gas emits mild alpha radiation in your body, which in turn activates a special messenger substance, **reducing inflammation** and promoting **natural healing processes**. The result: The number of free radicals in your body drops and you have **less pain**.

The concept of Effective Dose

We know the risks from high doses of radiation

- e.g. Atom Bomb survivors
- Atom Bomb survivors received whole body doses
- Dental patients receive doses to a very small region
- How can we relate the risks?

Effective Dose is a way of describing the dose to a limited region in terms of the whole body dose that would result in the same risk to the patient

Effective Dose takes the size and the nature of the region into account.

Fact #4 revisited:

The Effective Dose already takes the size of the region (and the organs involved) into account.

0.08mm voxels

Fact #5:

The smaller the voxel size, the higher the dose (this is a basic law of nature).

Image Quality in CBCT scans

- Noise

- electronic noise (dark current)
- photon noise (not enough x-rays)

- Artefact

- patient movement
- metal objects within the patient
- rings (machine calibration, poor operator technique)

- Spatial Resolution (resolution at high contrast)

- depends on machine design (focal spot size, detector elements, sampling, mechanical stability)
- voxel size can only limit the resolution cannot increase it!

- Contrast Resolution (resolution at low contrast)

depends on machine design (kVp, filtration, reconstruction algorithms)

The impossible dream

A good scanner will offer a range of voxel sizes, mAs and field sizes to suit the imaging task at hand.

Noise in CT / CBCT images

Noise = unstructured contribution to the image which has no counterpart in the object.

- Electronic noise (dark current)
 - Calibrating the scanner will reduce this
- Photon noise (not enough x-rays)
 - Signal-to-Noise Ratio is proportional to \sqrt{n}
 - Where n is the number of x-ray photons
Noise depends on voxel size

If you halve (1/2) each side of a cube e.g. from 0.4mm to 0.2mm Number of x-ray photons passing through it goes down by 8 (i.e. 1/8) Noise goes up by $\sqrt{8} = 2.83$ mAs (dose) may have to be increased to compensate

Dose does not depend directly on Voxel Size

- The noise depends on the voxel size
- On some machines (i-CAT Classic, Accuitomo F170) the operator may choose to increase the dose to compensate for a smaller voxel size
- On other machines (i-CAT 17-19 and CB-500) the machine automatically increases the dose for a smaller voxel size.

0.08mm voxels 50µSv

Fact #5 revisited:

The smaller the voxel size, the higher the noise. Increasing the dose is a choice made by the operator (or the manufacturer).

Fact #6:

The pixel values in a CBCT scan are an accurate representation of the tissue densities.

Three reasons why CBCT pixel values don't lie on the Hounsfield scale:

- The Hounsfield Scale is defined at 120kVp, but most CBCT scanners run at 80-90kVp
- The x-ray spectrum contains more low energy photons because of scattered radiation
- The voxel densities cannot be calculated accurately!

Fundamental Limitation of Small Field Of View

- CBCT measures the density within the Field Of View only
- Material outside the Field Of View has an unpredictable effect
- Software corrections means pixels may change with updates

4cm x 4cm

6cm x 4cm

8cm x 5cm

10cm x 6cm

Fact #6 revisited:

The smaller the Field Of View, the less reliable the pixel values are.

Fact #7:

Medical CT scanners deliver a much higher dose than dental CBCT scanners.

The Best CBCT Scanner on the Market

Toshiba Aquilion ONE medical CT Scanner

320 detector rows

operates in cone beam mode

0.5s scan time

volume capture 24cm x 16cm max

Effective Doses typical Mx 100µSv typical Mn 150µSv

Around £1M

Aquilion[™] is a trademark of Toshiba Medical Systems Corporation

Dental Protocols on medical CT Scanners

- Operator has more control over kVp, mAs, pitch than on a dental CBCT scanner.
- The dentoalveolar region has high natural contrast, so we can get away with a low radiation dose.
- Figures quoted in the literature (e.g. 2100µSv) are for brain scans, not for dental CT scans
- Training is required to help operators choose a low dose protocol for dental CT scans.

Toshiba Aquilion ONE 12cm x 6cm 0.25mm voxels DLP 54mGy.cm Effective Dose 150µSv approx.

Effective dose for medium field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Workshop on dental Cone Beam CT

	Toshiba Aquilion ONE	Siemens Definition AS	GE LIghtSpeed VCT	Siemens Sensation 64	Philips Brilliance 64	Toshiba Aquilion 64	Siemens Emotion 6
Min E.D.	70	100	150	150	160	111	145
Avg E.D.	124	276	370	310	346	416	343
Max E.D.	200	550	750	475	630	880	650
n=	28	46	351	36	70	129	35

Table 2B. Effective Doses (µSv) estimated from DLP*

*conversion factors from Shrimpton PC et al. Effective dose and dose-length product in CT. *Radiology* 2009; 250; 604-605.

www.idtscans.com

Review

E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw

David Harris^{1,*}, Keith Horner², Kerstin Gröndahl³, Reinhilde Jacobs⁴, Ebba Helmrot³, Goran I. Benic⁵, Michael M. Bornstein⁶, Andrew Dawood⁷ and Marc Quirynen⁸

Article first published online: 20 MAR 2012 DOI: 10.1111/j.1600-0501.2012.02441.x

© 2012 John Wiley & Sons A/S

Issue

Clinical Oral Implants Research

Volume 23, Issue 11, pages 1243–1253, November 2012

Fig. 1. Ranges of effective dose for the imaging modalities used in implant dentistry.

Fact #7 revisited:

The dose depends on the protocol, for both medical CT and dental CBCT.